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Divalent, square-planar group 10 complexes with sz-donor ligands
are precluded from forming 77-bonds since the empty d,-,2 orbital
is M—L o* in nature and does not have the proper symmetry for
m-overlap. Trigonal planar geometry, however, affords a metal
fragment having an empty in-plane orbital that can participate in
m-bonding, exemplified by the low-spin, d® nickel complex-cations
[(dtbpe)Ni=NHAr"] and [(dtbpe)Ni=P'Bu, "] (dtbpe = 1,2-bis(di-
tert-butylphosphino)ethane; Ar = 2,6-di-isopropylphenyl).'* The
synthetic strategy to these molecules involved preparing unusual
d® L,NiX complexes and subsequent 1-e~ oxidation to the d®
cations. Due in part to their low coordination number and cationic
charge, these complexes exhibit interesting reactivities.' > We were
intrigued about the possible consequences for reactivity of lowering
the coordination number of Ni to two. Power and Arduengo have
described examples of neutral, two-coordinate nickel in high spin,
d® Ni(NMesBMes,), and the d'® N-heterocyclic carbene (NHC)
complex Ni(IMes),.*> Herein we report unique two-coordinate, 13-
electron d° nickel amides of the type (NHC)Ni(NR,) and their
oxidations to afford interesting and surprising low-spin d® products.

Reaction of Sigman’s d°—d° dimer [(IPr)Ni(u-CD)], (1; IPr =
1,3-di(2,6-di-isopropylphenyl)imidazolin-2-ylidene)® with NaN-
(SiMe3), in a 1:2 stoichiometry yields the monomeric d® amide
(IPr)Ni{N(SiMes),} (2) as an analytically pure, yellow crystalline
compound in 72% isolated yield (Scheme 1). The solution magnetic
moment of 2 (uerr = 1.9 up) is characteristic of a 1-e~ paramagnet.
The molecular structure of 2 is shown in Figure 1 and features a
linear, two-coordinate geometry about nickel with Ni—N(3) =

Scheme 1. Syntheses and Oxidation of Ni(l) Amides (X = BAr,)
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Figure 1. X-ray structures of 2 (1) and 3 (r) with H-atoms (except on N)
omitted for clarity. Ellipsoids shown at 50% probability. Selected metrical
parameters for 2: Ni(1)-N(@3) = 1.865(2), Ni(1)—C(l) = 1.879(2),
N(3)—Si(1) = 1.712(2), N(3)—Si(2) = 1.708(2) A; C(1)-Ni(1)-N(@3) =
178.7(8)°. For 3: Ni(1)—N(3) = 1.831(4), 1.806(4), Ni(1)—C(1) = 1.878(5),
1.860(5) A; C(1)—Ni(1)—=N(3) = 163.2(2)°, 167.4(2)°.
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Figure 2. Cyclic voltammogram of 3 (THF/TBAH, 100 mV/s, Cp,Fe/
CpoFe™ corrected).

1.865(2) A and C(1)—~Ni—N(3) = 178.7(8)°. There are no short
inter- or intramolecular nonbonded contacts. Although not crys-
tallographically required, Si(1), Si(2), Ni, C(1), and three N atoms
are essentially coplanar. The Ni—N(3) distance is similar to that
found in the three-coordinate Ni(I) amides (PPh;),Ni{N(SiMej3),)}
(1.88(1) A)” and (dtbpe)Ni(NHAr) (1.881(2) A)." In an analogous
fashion, bright-purple (IPr)Ni(NHAr) (3) can be prepared from 1
and LiNHAr in 84% yield (Scheme 1). The solution magnetic
moment of 3 at 2.3 ug is higher than that expected for a spin-only
ion and suggests contributions from low-lying paramagnetic excited
states. The solid-state structure of 3 (see Figure 1) reveals two
independent molecules in the unit cell with Ni—N distances of
1.831(4) and 1.806(4) A. Although the C(1)—Ni—N(3) bond angle
in 3 (163.2(2)°, 167.4(2)°) deviates from linearity, there are no short
nonbonding contacts between Ni and either the IPr or amide ligands.

A cyclic voltammogram of a solution of 3 (THF/TBAH) shows
two quasi-reversible waves at Ej, = —0.84 and —2.41 V (vs Cp,Fe/
szFe+) for the Ni(II)/Ni(I) and Ni(I)/Ni(0) couples, respectively

10.1021/ja805804s CCC: $40.75 [] 2008 American Chemical Society
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Figure 3. Molecular structures of the complex cations of 4, 5, and 6 (1 to r). BAr", anions, H-atoms (except on N), and isopropyl groups in 5 have been
omitted for clarity. Selected metrical parameters for 4: Ni(1)—N(3) = 1.871(5), Ni(1)—C(31) = 2.054(6), Ni(1)—C(32) = 2.326(6), Ni(1)—O(1) = 1.947(4),
Ni(1)—C(1) = 1.907(6) A. 5: Ni(1A)—N(3) = 1.939(6), Ni(1)—C(34) = 2.008(7), Ni(1)—C(33) = 2.044(8), Ni(1)—C(32) = 2.211(6), N(3)—C(31) =
1.322(11), C(31)—C(36) = 1.462(13), C(31)—C(32) = 1.490(11), C(32)—C(33) = 1.401(11), C(33)—C(34) = 1.416(12), C(34)—C(35) = 1.438(12),
C(35)—C(36) = 1.364(12) A. 6: Ni(1)—N(3) = 1.881(5), Ni(1)—C(1) = 1.868(6), Ni(1)—C(39) = 1.907(7), N(3)=Si(1) = 1.661(5), N(3)—Si(2) = 1.740(5),

O(4)—Si(1) = 1.829(5) A; C(1)—Ni(1)—C(39) = 89.9(3), C(39)—Ni(1)—N(3) =

(Figure 2). While we have not yet been able to cleanly access the
reduction product of 3, d'® “(IPr)Ni(NHAr) ", we note that Gunnoe
has reported the isoelectronic Cu(I) complex, (IPr)Cu(NHAr).® On
the other hand, chemical oxidation of ether solutions of 3 with
[CpyFe][BAr",] (BAr"y = B[3,5-(CF3),CgHs]y) followed by recrys-
tallization of the blue-green product from THEF/pentane affords a
new diamagnetic Ni(Il) species, 4, in 76% yield (Scheme 1). The
"H NMR spectrum (THF-dg, 289 K) of 4 indicates fluxional amide
isopropyl groups and is consistent with the general formulation
[(IPr)Ni(NHAT1)][BAr"4], but such a two-coordinate, d® Ni complex
would almost certainly be high-spin. The diamagnetism of 4
suggested a higher coordination number, and a single-crystal X-ray
study revealed that the amide group adopts an 7°-heterobenzylic
coordination mode involving N, the ipso- and an ortho-C atom,
with concurrent ligation of THF (Figure 3). 4 is thus properly
formulated as the 16-e~ complex [(IPr)Ni(5*-NHAr)-
(THF)][BAr",]. VT '"H NMR data show inequivalent amide ‘Pr
groups at 198 K (500 MHz), consistent with the solid-state structure,
with an ~12 kcal/mol barrier to ring-hopping.

The THF ligand of 4 is labile, and recrystallization from CH,Cl,
gives a solvent-free (but still diamagnetic) 16-e~ dimer,
[(APr)Ni(N,;7*:NH=C¢'Pr,H;)],[BAr"4], (5; Scheme 1). The crystal
structure of 5 (Figure 3) revealed unusual bridging NHAr groups
with a long Ni—N(1) bond (1.939(6)A cf. 1.871(5) A in 4), an
~0.1 A reduction in the ipso-C—N bond compared with 4, and a
disruption of aromaticity in the aryl ring that allows its coordination
to a second Ni in a s-allylic manner. In THF solution, 5 rapidly
reverts to 4.

Unlike 3, the CV of 2 acquired under identical conditions exhibits
an irreversible oxidation at Ey, ~ —0.21 V. Surprisingly, 1-e~
oxidation of diethyl ether solutions of 2 with [Cp,Fe][BAr",] gives
brilliant-blue, diamagnetic [(IPr)Ni(CH;){«'-N(SiMes)=SiMe,*
Et,O}1[BAr",] (6, 74% yield), an iminosilane complex arising
from p-Me elimination from the expected d® cation
[(IPr)Ni{N(SiMes),} "] (Scheme 1; Figure 3).° The Ni center in 6
adopts a distorted T-shaped geometry with the NHC ligand trans
to a «'-iminosilane bound as a simple N-donor (C(1)—Ni—C(39)
= 89.9(3)°, C(1)—Ni—N(3) = 166.0(2)°).'° Free iminosilanes with

104.1(3), C(1)—Ni(1)—N@3) = 166.0(2)°.

bulky substituents are known,'" and early metal 7>-iminosilane
complexes have been reported.'> The Ni—CH; bond length
(1.907(7) A) is comparable to that found in [(dtbpe)Ni-
(CH,CMe,Ph) "] (1.954(3) A), where the neophy! ligand also sports
an ipso-Ph interaction with Ni.'® The lack of a stabilizing secondary
interaction of the methyl ligand (or solvent) with the metal makes
6 a unique example of a truly three-coordinate, 14-e™ Ni(II) alkyl
cation.
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